Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Sensors (Basel) ; 23(1)2023 Jan 02.
Article in English | MEDLINE | ID: covidwho-2166820

ABSTRACT

This paper proposes a new deep learning (DL) framework for the analysis of lung diseases, including COVID-19 and pneumonia, from chest CT scans and X-ray (CXR) images. This framework is termed optimized DenseNet201 for lung diseases (LDDNet). The proposed LDDNet was developed using additional layers of 2D global average pooling, dense and dropout layers, and batch normalization to the base DenseNet201 model. There are 1024 Relu-activated dense layers and 256 dense layers using the sigmoid activation method. The hyper-parameters of the model, including the learning rate, batch size, epochs, and dropout rate, were tuned for the model. Next, three datasets of lung diseases were formed from separate open-access sources. One was a CT scan dataset containing 1043 images. Two X-ray datasets comprising images of COVID-19-affected lungs, pneumonia-affected lungs, and healthy lungs exist, with one being an imbalanced dataset with 5935 images and the other being a balanced dataset with 5002 images. The performance of each model was analyzed using the Adam, Nadam, and SGD optimizers. The best results have been obtained for both the CT scan and CXR datasets using the Nadam optimizer. For the CT scan images, LDDNet showed a COVID-19-positive classification accuracy of 99.36%, a 100% precision recall of 98%, and an F1 score of 99%. For the X-ray dataset of 5935 images, LDDNet provides a 99.55% accuracy, 73% recall, 100% precision, and 85% F1 score using the Nadam optimizer in detecting COVID-19-affected patients. For the balanced X-ray dataset, LDDNet provides a 97.07% classification accuracy. For a given set of parameters, the performance results of LDDNet are better than the existing algorithms of ResNet152V2 and XceptionNet.


Subject(s)
COVID-19 , Deep Learning , Pneumonia , Humans , COVID-19/diagnostic imaging , Pneumonia/diagnostic imaging , Tomography, X-Ray Computed , Algorithms , COVID-19 Testing
2.
Data Science for COVID-19 ; : 487-505, 2022.
Article in English | EuropePMC | ID: covidwho-1781817

ABSTRACT

In December 2019, a new form of coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) started spreading in Wuhan, China. According to the situation report-95 published by the World Health Organization (WHO), the coronavirus disease spread rapidly to 213 countries and territories by April 24, 2020, with the number of confirmed cases and deaths of 26,26,321 and 1,81,938, respectively. The WHO declared coronavirus disease 2019 (COVID-19) as a pandemic on March 11, 2020. People living in many countries are in lockdown and staying at home because of this deadly virus. Patients of COVID-19 are reported to have single or multiple symptoms, while some patients do not have any remarkable symptom at all. Patients have reported symptoms of dry cough, sore throat, fever, fatigue, breathing problem, and gastrointestinal infection. COVID-19 may become very dangerous especially for aged people and people with any other disease such as diabetes, kidney problem, etc. In that case, the virus can cause acute respiratory distress syndrome and cytokine storm. The whole world is in lockdown because of this deadly virus. Currently, there is no particular cure for this disease;however, researchers are trying to find appropriate antiviral and repurposed drugs. This chapter provides a review on the different aspects of COVID-19 including the epidemiology, genomic sequence, and clinical characteristics;current medical treatment options;and development of vaccines and drugs.

3.
PLoS One ; 16(10): e0259179, 2021.
Article in English | MEDLINE | ID: covidwho-1496531

ABSTRACT

This paper focuses on the application of deep learning (DL) in the diagnosis of coronavirus disease (COVID-19). The novelty of this work is in the introduction of optimized InceptionResNetV2 for COVID-19 (CO-IRv2) method. A part of the CO-IRv2 scheme is derived from the concepts of InceptionNet and ResNet with hyperparameter tuning, while the remaining part is a new architecture consisting of a global average pooling layer, batch normalization, dense layers, and dropout layers. The proposed CO-IRv2 is applied to a new dataset of 2481 computed tomography (CT) images formed by collecting two independent datasets. Data resizing and normalization are performed, and the evaluation is run up to 25 epochs. Various performance metrics, including precision, recall, accuracy, F1-score, area under the receiver operating characteristics (AUC) curve are used as performance metrics. The effectiveness of three optimizers known as Adam, Nadam and RMSProp are evaluated in classifying suspected COVID-19 patients and normal people. Results show that for CO-IRv2 and for CT images, the obtained accuracies of Adam, Nadam and RMSProp optimizers are 94.97%, 96.18% and 96.18%, respectively. Furthermore, it is shown here that for the case of CT images, CO-IRv2 with Nadam optimizer has better performance than existing DL algorithms in the diagnosis of COVID-19 patients. Finally, CO-IRv2 is applied to an X-ray dataset of 1662 images resulting in a classification accuracy of 99.40%.


Subject(s)
COVID-19/classification , COVID-19/diagnostic imaging , Image Processing, Computer-Assisted/methods , Algorithms , COVID-19/metabolism , Data Accuracy , Deep Learning , Humans , Neural Networks, Computer , ROC Curve , Radiography/methods , SARS-CoV-2/pathogenicity , Sensitivity and Specificity , Tomography, X-Ray Computed/methods
4.
International Journal of Hybrid Intelligent Systems ; 17(1-2):71-85, 2021.
Article in English | ProQuest Central | ID: covidwho-1318372

ABSTRACT

This paper focuses on the application of deep learning (DL) based model in the analysis of novel coronavirus disease (COVID-19) from X-ray images. The novelty of this work is in the development of a new DL algorithm termed as optimized residual network (CO-ResNet) for COVID-19. The proposed CO-ResNet is developed by applying hyperparameter tuning to the conventional ResNet 101. CO-ResNet is applied to a novel dataset of 5,935 X-ray images retrieved from two publicly available datasets. By utilizing resizing, augmentation and normalization and testing different epochs our CO-ResNet was optimized for detecting COVID-19 versus pneumonia with normal healthy lung controls. Different evaluation metrics such as the classification accuracy, F1 score, recall, precision, area under the receiver operating characteristics curve (AUC) are used. Our proposed CO-ResNet obtains consistently best performance in the multi-level data classification problem, including health lung, pneumonia affected lung and COVID-19 affected lung samples. In the experimental evaluation, the detection rate accuracy in discerning COVID-19 is 98.74%, and for healthy normal lungs, pneumonia affected lungs are 92.08% and 91.32% respectively for our CO-ResNet with ResNet101 backbone. Further, our model obtained accuracy values of 83.68% and 82% for healthy normal lungs and pneumonia affected lungs with ResNet152 backbone. Experimental results indicate the potential usage of our new DL driven model for classification of COVID-19 and pneumonia.

5.
Curr Med Imaging ; 17(12): 1403-1418, 2021.
Article in English | MEDLINE | ID: covidwho-1310013

ABSTRACT

BACKGROUND: This paper provides a systematic review of the application of Artificial Intelligence (AI) in the form of Machine Learning (ML) and Deep Learning (DL) techniques in fighting against the effects of novel coronavirus disease (COVID-19). OBJECTIVE & METHODS: The objective is to perform a scoping review on AI for COVID-19 using preferred reporting items of systematic reviews and meta-analysis (PRISMA) guidelines. A literature search was performed for relevant studies published from 1 January 2020 till 27 March 2021. Out of 4050 research papers available in reputed publishers, a full-text review of 440 articles was done based on the keywords of AI, COVID-19, ML, forecasting, DL, X-ray, and Computed Tomography (CT). Finally, 52 articles were included in the result synthesis of this paper. As part of the review, different ML regression methods were reviewed first in predicting the number of confirmed and death cases. Secondly, a comprehensive survey was carried out on the use of ML in classifying COVID-19 patients. Thirdly, different datasets on medical imaging were compared in terms of the number of images, number of positive samples and number of classes in the datasets. The different stages of the diagnosis, including preprocessing, segmentation and feature extraction were also reviewed. Fourthly, the performance results of different research papers were compared to evaluate the effectiveness of DL methods on different datasets. RESULTS: Results show that residual neural network (ResNet-18) and densely connected convolutional network (DenseNet 169) exhibit excellent classification accuracy for X-ray images, while DenseNet-201 has the maximum accuracy in classifying CT scan images. This indicates that ML and DL are useful tools in assisting researchers and medical professionals in predicting, screening and detecting COVID-19. CONCLUSION: Finally, this review highlights the existing challenges, including regulations, noisy data, data privacy, and the lack of reliable large datasets, then provides future research directions in applying AI in managing COVID-19.


Subject(s)
COVID-19 , Deep Learning , Artificial Intelligence , Humans , Machine Learning , SARS-CoV-2
6.
Data Science for COVID-19 ; : 175-194, 2021.
Article in English | PMC | ID: covidwho-1244653
7.
Inform Med Unlocked ; 20: 100391, 2020.
Article in English | MEDLINE | ID: covidwho-634281

ABSTRACT

Lung disease is common throughout the world. These include chronic obstructive pulmonary disease, pneumonia, asthma, tuberculosis, fibrosis, etc. Timely diagnosis of lung disease is essential. Many image processing and machine learning models have been developed for this purpose. Different forms of existing deep learning techniques including convolutional neural network (CNN), vanilla neural network, visual geometry group based neural network (VGG), and capsule network are applied for lung disease prediction. The basic CNN has poor performance for rotated, tilted, or other abnormal image orientation. Therefore, we propose a new hybrid deep learning framework by combining VGG, data augmentation and spatial transformer network (STN) with CNN. This new hybrid method is termed here as VGG Data STN with CNN (VDSNet). As implementation tools, Jupyter Notebook, Tensorflow, and Keras are used. The new model is applied to NIH chest X-ray image dataset collected from Kaggle repository. Full and sample versions of the dataset are considered. For both full and sample datasets, VDSNet outperforms existing methods in terms of a number of metrics including precision, recall, F0.5 score and validation accuracy. For the case of full dataset, VDSNet exhibits a validation accuracy of 73%, while vanilla gray, vanilla RGB, hybrid CNN and VGG, and modified capsule network have accuracy values of 67.8%, 69%, 69.5% and 63.8%, respectively. When sample dataset rather than full dataset is used, VDSNet requires much lower training time at the expense of a slightly lower validation accuracy. Hence, the proposed VDSNet framework will simplify the detection of lung disease for experts as well as for doctors.

8.
Inform Med Unlocked ; 20: 100374, 2020.
Article in English | MEDLINE | ID: covidwho-598717

ABSTRACT

This paper describes different aspects of novel coronavirus disease (COVID-19), presents visualization of the spread of the infection, and discusses the potential applications of data analytics on this viral infection. Firstly, a literature survey is done on COVID-19 highlighting a number of factors including its origin, its similarity with previous coronaviruses, its transmission capacity, its symptoms, etc. Secondly, data analytics is applied on a dataset of Johns Hopkins University to find out the spread of the viral infection. It is shown here that although the disease started in China in December 2019, the highest number of confirmed cases up to June 04, 2020 is in the USA. Thirdly, the worldwide increase in the number of confirmed cases over time is modelled here using a polynomial regression algorithm with degree 2. Fourthly, classification algorithms are applied on a dataset of 5644 samples provided by Hospital Israelita Albert Einstein of Brazil in order to diagnose COVID-19. It is shown here that multilayer perceptron (MLP), XGBoost and logistic regression can classify COVID-19 patients at an accuracy above 91%. Finally, a discussion is presented on the potential applications of data analytics in several important factors of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL